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S T A B I L I T Y  OF A F A S T  M A G N E T O H Y D R O D Y N A M I C  S H O C K  WAVE 

IN P L A S M A  W I T H  A N I S O T R O P I C  P R E S S U R E  

A.  M .  B l o k h i n  and  Y u .  L. T r a k h i n i n  UDC 537.84 

Various models of magnetic hydrodynamics (including the so-called Chew-Goldberger-Low model 
[1, 2]) are widely used for describing real processes in some fields of physics and engineering such as 
astrophysics, high-velocity aerodynamics, etc. In these processes, as is known, the medium often moves 
with strong discontinuities, for instance, shock waves. Therefore, the problem on the stability of strong 
discontinuities (including shock waves) generates interest in magnetic hydrodynamics with anisotropic 
pressure. 

The stability of strong discontinuity has not yet been studied comprehensively, even in the usual 
magnetic hydrodynamics, in contrast to, say, gas dynamics [3, 4]. Indeed, after the publication of classical 
works [5, 6], only a few subsequent papers can be noted (see, e.g., [7, 8]) in which the stability of strong 
discontinuity is discussed to some extent. 

To study the problem on stability of fast shock waves in magnetic hydrodynamics with anisotropic 
pressure, we have used an equational approach which implies the study of the well-posedness of the linear 
mixed problem on stability of fast shock waves. The main point of the study is the construction of an a 
priori estimate indicating the correctness of this problem. The most complete description of the approach in 
application to the problems of the usual magnetic hydrodynamics is presented in [9]. Two particular cases of 
the above linear mixed problem on stability of a fast shock wave in magnetic hydrodynamics with anisotropic 
pressure were considered in [10], and the well-posedness of the problem was proved by constructing an a priori 
estimate using the technique of energy dissipation integrals. 

Dealing with the general statement of the linear mixed problem on the stability of a fast 
magnetohydrodynamic shock wave in plasma with anisotropic pressure, the present paper proves the well- 
posedness of the mixed problem, thus corroborating the stability of this type of strong discontinuities under 
some assumptions on the parameters characterizing the initial stationary discontinuity. 

1. E q u a t i o n s  of Ani so t rop ic  Magne t i c  H y d r o d y n a m i c s  and S t rong  Discon t inu i ty  Relat ions.  
In the Chew-Goldberger-Low approximation, the motion of collisionless plasma in the high magnetic field is 
described by the following system of equations (see [1, 2, 11]): 

p~ + div (pv) = 0, 
3 

(pvi),  + (Hik) .k = 0, i = l ,  2, 3, 
k=l (i.1) 

Ht - rot (vxH)  = 0, (pSII)t + div(pvS II) = 0, (pS•  + div(pvS • = 0. 

Here, p is the plasma density, v = (vl, v2, v3)* is the plasma velocity, t is time, and x = (Zl, X2, X3) iS the vector 
in Cartesian coordinates, Hik = pvivk + :Pbibk +:P• Hik = pvivk + T'bibk +7='• are the components of the 
momentum flux tensor; P = pl]-p• -w2/(4~r), P•  = p• +w2/(8~'), where p[[ and p• are the longitudinal and 
transverse pressures respectively; w = ]H[; b = (bl, b2, b3)* = H / w ,  where H = (H1, //2, //3)* is the magnetic 
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field intensity vector, S II and S • are the longitudinal and transverse entropies respectively. Moreover, the 
follmving thermodynamic identity [11] holds: 

pll pl[ _ p____~l 
dE = TIIds II + T z d S  • + __-fidP pw dw, (1.2) 

where E is the internal energy, TII and T • are the longitudinal and transverse temperatures. It follows from 
(1.2) that 

pll - p• 
TII=EsII  ' T j- = ES• pl l=p2Ep ' - -  = - E w .  

pw 

Thus, adding the plasma state equation to system (1.1) 

E = E(p, S II, S • w), 

we will close it. System (1.1) may be considered as an appropriate system for determining the components of 
the vector 

p 
v 

U =  H 
SII 
S" 

The following condition, which is obligatory in magnetic hydrodynamics, should be included in (1.1): 

d ivH = 0. (1.3) 

In essence, this is an additional requirement imposed on the initial data for system (1.1): UIt=0 = U0(x). 
This statement becomes obvios if we operate by div on Ht - rot ( v x H )  = 0, assuming that condition (1.3) 
holds at t = 0. 

Finally, we 5.1so add to (1.1) the energy conservation law 

(s + d i v e  = 0, (1.4) 

where 
to 2 w 2 t.~ 2 

$o=pE + p-~- + ~"~; w = l v l ;  E = (Cl,g2,$a)* = pv (E  + -~)  + .~a H x ( v x n )  + p•  + (pll - p• v). 

Note that this is the law (1.4) that was used in [12] in the symmetrization of Eqs. (1.1). The system 
can be rewritten, according to [12], in the symmetric form 

3 
A0(U)Ut + ~ Ak(U)U= k = 0 

k=l 

where Aa (a = (~3A-) are the symmetric matrices described in [12]. 
Further, let the plasma state equation be given by [11] 

p• pll 
E = - - + - -  

p 2p 

(the analog of the polytropic gas model for plasma). Then, 

(1.6) 

c S =cln(P.. _, S II = ~ ln  \ p a ]  ~,pw]' cp' cp (1.7) 
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where c is constant. Note also that last two equations in (1.1) are rewritten i~ ~his case as 

d 0 ( O  0 0)* 
Here dU = 0-~ + (v, V); V = ' 0~2' O73 

As is known, surfaces of strong discontinuities (shock waves, rotational discontinuity, and so on) may 
appear in collisionless magnetized plasma. Let us consider the piecewise smooth solutions to system (1.1) in 
which the smooth pieces are separated by the strong discontinuity surface given by the equation 

)~(t,x) = f ( t ,x ' )  - Xl = 0, x ' =  (x2, x3). 

On the strong discontinuity surface, the following relations are valid [2]: 

[ j ] = 0 ,  [HN]=0 ,  [ j v u + 7 5 ] = 0 ,  j[v~-,]=-H~v[-~P] ( i = 1 , 2 ) ,  
(i.8) 

Hg[vri]=j[VH~ i] ( i = 1 , 2 ) ,  [ V s 1 7 7  j [ S •  

where the usual notation is used: [F] = F - Fr [F is a value ahead ofthe shock (as fi--~ - 0) and Fco is a 
value behind the shock (as f ~  + 0)]. Here, j = p(vtv - ON) is the mass flux across the shock, vy = (v, N); 

N = 1_ ( -1 ,  fz2, fz3)* is a normal to the strong discontinuity surface, 
Iv/I 

-ft 
1~7]l = ~/1 + f22 + ]23; ON = IVfl; 

HN = (H,N);  vq = (V, T1) and so on; 
~'1 = (L~, 1,0)*; -r2 = (f~3,0, 1)*; (~-I,N) = 0 (i = 1,2); 

pll _ p• 
;5 = p• + w----5-- H~; 

V = 1/p is the specific weight. Note that we use the standard closure of the strong discontinuity relations for 
anisotropic plasma, namely, the last (closing) relation in (1.8) is the condition of the first adiabatic invariant 
conservation [13-15]. 

A detailed classification of strong discontinuities in anisotropic magnetic hydrodynamics is given in [2]. 
In the context of the present work, of interest are the shock waves for which the following conditions hold: 

j r 0, [p] r 0. (1.9) 

In this case, the relation [vN] 2 + [V] [7 5] = 0 can be used instead of the third condition in (1.8), and the 
equality (the analog of the Hugoniot adiabat in gas dynamics) 

[E]+(pli)[V]_<[~2]2(pll_p• +<pll-p•  > 1 ]2 ~2" I H~I [ VIH~I] + ~ [ V I [ I H ~ I  = 0 

[(F} = (F + F~)/2, and H~ is the component of the vector H tangent to the shock surface] can be used 
instead of the next to last condition in (1.8). 

2. L inear iza t ion .  Linearizing system (1.5) with respect to a constant solution to system (1.1) 

u = U = (~, ~ , , ~ , ,  ~1, ~•  

we obtain the linear system 
3 

20(~u) ,  + ~ 2k(~U)~k = 0. (2.1) 
k=l  
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Here fi,~ = Aa(U) (a = 0,3); 5U = (Sp, Sv',SH*,SSII, 6s• * is the vector of small disturbances. In the 
subsequent discussion we denote the vector 6U by U again. 

For the entropy disturbances, the equalities are derived from (1.7): 

SII= l_.~{2Pl, i 6 l l -  3i~ll " I S• - 1 ~J- --  ~_  

Taking them in to account, it is possible to write system (2.1) in the dimensionless form 

Lp + d ivv  = 0, Lv+VPJ' -~2(h ,V)H+-~(h ,V( /Spl I -p•  = 0 ,  
(2.2) 

LH - rot ( v x h )  = 0, Lp II + divv + ~2(h, Vvh) = O, Lp • + 2divv - q-~(h, Vvh) 0, 

where the coordinate x/~ (k = I, 2, 3), time t, the components of the vectors v and H, the values of pl[, p• 

and p are normalized to the characteristic parameters: l'~ l"/Y, Y, Y 4 ~ ,  /~11, ~• ~; ~" is the characteristic 

length; ~ = (~• is the sound velocity in plasma; 

0 0 
L = T + ( M , V ) ;  r=~-~ ;  V=(~1,~2,~3)*; ~k=Oz k 

r162 
M = : = ( M 1 ,  M2, M3)*; P•177  H h = ( h , H ) ;  C 

(~2 -/5)1/2 
�9 h * = , q = Ihl; h = (hi,h2, 3) = - -  q 

(k = 1,2,3); 

Vh = (h, v); 

= 1 + = 

In the statement of mixed problems for the systems (2.1) and (2.2), it is necessary to know the number 
of the boundary conditions at zx = 0 which should coincide with number there of the positive characteristic 
values of matrix AolA1 [16]. After calculations, we find the matrix characteristic values (see also [2]): 

~l,2,3(Ao1,x~l) : Vl, /~4,5(,4oI,z~1) ~--- vl"4-CA, /~6,7(,~O12~1) = ~14"~M, )ts,9(Aol,~xl) = v14-c~. (2.3) 

Here ~A = Yhl~ is the Alfven velocity (for the sake of definiteness, we assume that hi /> 0), 

�9 + 

are high and slow magnetic sound velocities in plasma [17]; l = ha/q. For the matrix A0 to be positive definite, 
as shown in [12, 18], the inequalities 

i01 < t5 < /~2 (2.4) 

(where t51 = 1//52) should be valid. In this case, system (2.1) is symmetric and t-hyperbolic (according to 
Friedrichs). Moreover, the values of $A and YM ~ satisfy the inequalities [12, 18] 

0 < ~ M < ~ A < Y  +, if P l < / 5 < P . < / 5 2 ,  

0 < ~ M = ~ A < ~  +, if /5=/5 . , /51</5 .< /52 ,  

0 < ~ A < ~ M < ~  +,  if P a < P * < / 5 < P 2  

/5, = q4 + 3q2 + 3). 
7q 5 

( 2 . 5 )  

Finally, we linearize system (1.1) with respect to the discontinuous solution. Let us consider the 
piecewise constant solution 

{ A ^ ^* ~*  1̂1 ^J- * U( t ,x)  = U ~  = ( p ~ , v ~ , H ~ , S " , S ~ )  , xl < 0, 
= (fi, q* ,~* ,g l l , $ •  Xl > 0 (2.6) 
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to system (1.1), satisfying relations (1.8) at xl = 0 provided that the shock froa~ is stationary and defined by 

~2 ~ = 0 ,  

;[~il  = - P N  H1 (i = 2 ,3) ,  Hl[~ i l  = ; [ 9 ~ 2 ]  (i = 2 ,3) ,  (2.7) 

~ + ~  
+ + : o ,  3t, 'l o. L~-~ (g2 ~2 + = 

Here ~J = 1/~; 73 = ~ll_i~'L_~2/(4~r); /~ = ~.L +i~11~-/2" Linearizing Eqs. (1.1) and relations (1.8) with respect 
to piecewise constant solution (2.6) and taking account of (2.7), we obtain the mathematical formulation of 
the strong discontinuities stability problem in magnetic hydrodynamics with anisotropic pressure. 

M a i n  P r o b l e m .  In the domain t > 0, xER3+, a solution is sought to the system 

3 
SoU, + ~ ~kv~ = o, (2.8) 

k=l 

while in the domain t > 0, xER3, a solution is sought to the system 

3 

,40~Ut + ~ -4}r = 0, (2.9) 
k= l  

[61p + J] = 0, [I] = 0, 216&] + [6~p + 1-i "L + Ha] = 0, 

~ 2 + ~ )  ~ k + f k ( f l P + J ) + ' J v k + ~  k +  = 

[~'H"kJ + 61Hk - 6kI - Hark] = 0, k = 2, 3, (2.10) 

PHa ~ +--~{(H,V) + (~,H)} + n~ =0, 1 [(6lp-I- J)S• + ~s-L] = o, 

and at t = 0 they must satisfy the initial data 

UI,--0 = U0(x), xeR~:, Fl,=0 = F0(x'), x ' e R  2. (2.11) 

Here F -- F ( t , x ' )  = 5f ( t ,x ' )  is small displacement of the shock front, ,4aoo = Aa(Uoo) (a = g-~); 

J = ~(61 - 62F~ - 63F~ - Ft); I = H~ - H2F~ - H3Fz~; 

= ~ [ t ~  ; 

I'I2 = HI(pll - P'L) + 73I- 2( ~'H)'l~l~li - ; 73.L = P• + -8-~'~2 

Note that, solving mixed problem (2.8)-(2.11), we also find the function F = F( t ,x ' ) .  To do this, one of 
the conditions (2.10) should be considered as an equation for determining the function F ,  Furthermore, if all 
characteristic values of the matrix Aloo (or - - a  - AoooAloo ) are nonnegative, we assume, without losing generality, 
that U( t , x )  - 0 at x~ < 0. 

3. S t a t e m e n t  of  t h e  P r o b l e m  on Fast  Shock  Wave  Stabi l i ty .  In anisotropic magnetic 
hydrodynamics similar to the usual magnetic one, fast and slow shock waves exist. We consider the case 

of fast shock waves. 
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Let the stationary discontinuity be a shock wave (] # 0, [fi] 5r 0). Without loss of generality, we assume 
that 6l, Hi > 0. The conditions 

^ ^ +  
Vloo > CMoo, CM + > Vl > max {CA, CM } (3.1) 

or  

~1~ > }+or ~+ > max {~A, ~M} > 61 > min {~A, ~M} (3.1') 

correspond to a fast shock wave. By virtue of the first condition from (1.1), taking into account (2.3) and 
(2.5), it follows that all characteristic values of the matrix AoooAloo are positive and, consequently, system 
(2.9) does not require a boundary condition at zl  = 0, i.e., U = 0 at xl < 0. By the second condition in 
(3.1), the matrix AolA1 has eight positive characteristic values, i.e., eight boundary conditions should be set 
for system (2.8). As a result, nine boundary conditions are required for fast shock wave evolution [18]. One 
of them is the equation for seeking F. Using the same line of reasoning, in the case where conditions (3.l') 
are valid, we conclude that eight boundary conditions are necessary for wave evolution at xl = 0, with no 
boundary condition being required again for system (2.9). In this case, the last (closing) relation in (1.8) is 
redundant. 

Let conditions (3.1) hold on stationary discontinuity. State mathematically the problem on fast shock 
wave stability in the plane case. 

P r o b l e m  ~'. In the domain t > 0, xER2+, the solution is sought to the system of equations [see also 
(2.2)] 

Lp + divv = 0, Lv + b(b, V(/Sp [I - p• +/5 - 1 (b, V)(crH~ - bHb) + Up  • - q(~lH2 - ~2H1)o" = 0, 

q (3.2) 
LH1 + q~2va = O, LH2  - q~lv~ = O, Lp  II + divv + 2(b, VVb) = O, Lp  • + 2div v - (b, VVb) = O. 

At t > 0, xi = 0, x 2 G R  1, the solution should satisfy the boundary conditions 

1 
Ft + M2F~ 2 - 1---L--~{Vl + Map - tS[M2]F~2}, Hi = [he]F~ 2, 

p• + qHb +/2(i~pll -- p• -- 2(io -- 1 ) l m H a  - 21q[h2]Fz2 + 2Mlvl + M2p = 0, 
q 

poo -- 1 ~3.x2m 2 [M21 2 [M2] fi(Vl + MIp) Mlv2 {/5•  1 -  ( /5-1)m2 + 2[h22] + / 2  + ~-Sm 2 + ~ - ~ / 5 } F x 2  1-15 

+ ( ~ - -  - + Im / ~ p l l _ p •  = 0 ,  M i H 2 = [ h 2 ] ( F t + M 2 F z 2 ) + q v ~ ,  
q q 

+ xm~,(poo -- I _  • -- _I 2 + -- - -  

+ l + p ' + - -  + ( 1 2 + x 2 m 2 ) q 2 + . - - f f  - -  2 + ~ + q 2 +  P 1--/5 
i 

+4,} + 

+ / ( b , M ) { / ~ p l l - p  • 2-Hb( /~-1)}  = 0 ,  S • = 0  
q 

and the initial data at t = 0 

(3.3) 

V l t = o =  Vo(x), xeR2+, Flt=o = Fo(x2) ,  x 2 e R ' .  (3.4) 
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Here 
, h2 U = (p,v ,H*,pll,p• b = (/,m)*; m = - - ;  tr = ( -m, / )* ;  V = (~1,{2)*; 

q 

6200 H2~ . p~ h2c0 
M2oo = ~ ; h2er 4 ~ '  /5=-~- ;  X = 

p h2 

Mloo = - = viM1; Vl = , Hb = (b,H);  

^ •  

p•  p ~ =  
p -  P~ 

L = r + MI~I + M2{2; 

M = (M1, M2)*; 

H~ = (tr, H); vb = (b,v);  va = (cr, v); 

S • is a small disturbance of the transverse entropy divided by/~•177 Boundary conditions (3.3) are taken 
from general conditions (2.10) and written in dimensionless form. Moreover, if we take the Galilei transforms 

t ! = t ,  X~ = X l ,  X~ = X2 - -  M 2 t ,  

then the operator L in system (3.2) and the aggregate (Ft + M2Fz:) in boundary conditions (3.3) become 

L = r + M1~1 and Ft 

(all primes are dropped). 
For the transverse entropy disturbance, the equation in dimensionless form holds 

S • = p• - p - Hb/q. 

On the other hand, the function S• x) is the solution to the mixed problem 

LS • = O, t > O, x E R2+, 

S • = 0, xl = 0, x2 E R 1, (3.5) 

S•  = S r  x e 

Assume, without loss of generality, that S~-(x) - 0, xER 2. Then, we can assume, taking into account (3.5), 
t h a t S  •  t > 0 ,  xER2+. In this case 

p = p• - Hb/q. (3.6) 

Thus, taking account of (3.6), it is possible to simplify the statement of the problem 9 r in the following way: 
the first equation in system (3.2) and the last equation in boundary conditions (3.3) are eliminated, and 
equality (3.6) replaces p. 

It is shown in [18] that 

d i v H - - 0 ,  t > 0 ,  x E R  2. (3.7) 

If conditions (3.1 ~) hold, the last equality in boundary conditions (3.3) should be eliminated in the 
problem ~', with equality (3.6) not being true. 

4. S t u d y  of  S t a t i o n a r y  Discont inui ty .  We consider relations (3.7) for a fast shock wave G # 0, 
[~] # 0) in plane case. We write them as 

2 (/~ i6• (•r162 - 1 ) )  pvl = l hl = hlcr M , P -  l + 1 -  ~• + q2m2(1-  X2) +12 - 1  = 0  

Ml [M2l - q21m(1- X) + Im ~ - I P~X(--ff~--~.= I ) "~ = O, l[Mal = M lm  ( 1 -  X ) , 
12 + X 2m2 ] (4.1) 

- - - 1 [M2] q 2 m 2 ( l _ X _ ~ ) + 1 2 ( ~ _ 1  /5*(/5r ~ M 1 { 2 ( 1 - ~ ) + 1 ( / ~ - ~ / ~ •  1 ~ ) +  ~ +  - -  ~(12 + x2m2)] }, 

+ l m { M 2 ( f f -  I) (P~ - IlPZxM2~162 } ~• 
- 12 + x2m2 - qa(M2 - xM2oo) = 0, = / ~ / l  2 -4- x2rn 2, 

where hloo = Hloo/(E 4 ~ ) ;  M2oo = 62oo/E 
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The evolution of a fast shock wave in two particular cases [parallel wave (1 = 1, m = 0) and transverse 
wave (l = 0, m = 1)] is shown in [10]. Here we consider the general case (0 < l < 1), suggesting the pressure 
in the plasma to be high [/311 >> ~2/(4rr), i~• >> z~2/(4r)], i.e, q << 1 [q2 = @2/(47r~J_), see also (2.4)]. 

As in the usual magnetic hydrodynamics, e.g., [19, 20], without loss of generality, the following 
conditions are assumed to be valid: 

$El>g , Z>Z=>0, 
They can be rewritten as 

,~11>~11, /5r177 O < i 6 J - < l ,  O < f i < l ,  ~ 1 > 1 ,  O < X < I .  (4.2) 

We expand all values involved in (4.1) into a series in the small parameter q 

= Ro + R x q  + R2q 2 + . . . ,  /5• = Po + P lq  + P2q 2 + . . . ,  2 = Zo + Z l q  + Z2q 2 + . . . ,  
(4.3) 

/5 = Yo + Y ,q  + Y2q 2 A- . . .  , f i~  = wo q- w l q  Jr w2q 2 "4-...  , [M2] = m o  q- m l q  -1- m2q 2 + . . .  

and so on. Let us consider the parameter 

Mo = 61/c-'+M, 

which, in view of the second condition in (3.1), satisfies the inequalities 

O < M 0 < I .  

Substituting expansions (4.3)into (4.1) and taking (2.4) into account, we obtain 

Ro = Po = Zo = yo = wo = 1, mo = rex, R1 = P1 = Z 1  = Yl = w l  = O. 

Then, omit t ing detailed calculations, the first inequality in (3.1) can be rewritten as 

M 2 > P0- 

Here P0 = 1 + O(q2); P0 < 1. Consequently, 

M02 = 1 + O(q2), (4.4) 

In view of the equation for the high magnetic sound velocity, we obtain 

M 2 = MoZk, k = w + O(q2), 

where w = 1 + ~- + 1 - 4l 2 + 14. Then, taking into account (4.4), we have 

M12 = w  + O(q2). (4.5) 

We find, using (4.5), from (4.1) that  

( m_~) Pi m w - 2 + l  2 2 - 1 2 - w  
Rk = 1 -- Pi ,  Zi  = - - ,  m i  - Pi,  Yi - -  W i  = Pi 

to l ~ l 2 
( i = 2 ,  3), (4.6) 

with P2 <~ 0 in view of (4.2). If/ '2 = 0, then (4.6) are valid at i = 3, 4 (P3 ~< 0) and so on. Therefore, without 
loss of generality, we assume that  P2 < 0. Note that  the inequality ~1 > 1 holds by virtue of the first relation 
in (4.1). It is easy to check that  the first and second inequalities in (4.2) are also valid. 

It remains to verify the validity of the inequalities 

/~1o0 </500 </5200. (4.7) 

Here/boo = 1 + q2/5.t/fi2;/51oo = 1//52oo. It is easy to check that  (4.7) holds if 

[w2[ < 1, [y2[ < 1. (4.8) 

This means that  the parameters y2, w2, and P2 should be chosen so that  (4.8) is true. 
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Finally, note that  at q << 1 the case (3.1 ~) is not t rue for a fast shock wa,e ,  i.e., the shock wave is not 
evolutionary. 

5. A P r i o r i  E s t i m a t e  o f  t h e  S o l u t i o n  t o  P r o b l e m  ~ .  Let us prove the well-posedness of problem 
5 r at q << 1 and 0 < l < 1. In other words, prove the stabil i ty of a fast magnetohydrodynamic  shock wave in 
anisotropic plasma at high pressure, taking into account the result obtained in [10] at l = 0, 1. 

It is now convenient to rewrite boundary  conditions (3.3) in view of (4.6) as 

Vl "4- dp • = NI~2F, r F  = / z p  • + N2~2F, v2 = Ao~2F + rlp • 
(5.1) 

pll = . p •  + N3 2F, H2 =  q(Z - x ) r F  + qva, =  q(1 - x) 2F, 

where 

m 2 1 3/2 -- w 
d = l - - - + O ( q 2 ) ;  # =  

w P2 20/2rn2 - w(5/2 + 3) + O(q2); 

Ao = - P 2  ( 1  + (w-2m2)(w12(w+-(w-m2)(712+l)))q2rn2) 2ca q- O(q3); 

r o w - - m 2 - - 1  
-b O(q 2) ( r / =  O(q 2) at l = 1/x/~); 7 /=  / w 

w - 2m 2 
v = l-----T---- + O(q2); Ni = O(q 2) (i = 1, 2, 3) 

(here, we omit  too cumbersome calculations). In sys tem (5.1), we use normalization of the parameters  other 
than normalization used in the s ta tement  of problem ~'. The  difference is that  in the set of characteristic 
parameters,  1"/61 is taken instead of l'/E and Vl instead of ~. 

The third and fourth equations in sys tem (3.2) can be rewrit ten as 

LHb + qL,rv,, = O, LH,r - qLbva = O, (5.2) 

where Lb = (b,  V); na  = (o', ~7). Then, with (3.7) taken into account, it follows from (5.2) tha t  there exists 
the function ~ = r  so that  Hb = - q L a r  Ha = qLbq~, L ~  = Va. 

We take into consideration the function k~ = ~( t ,  x)  also: 

1 • 
_ppJl + (1 + 

t I ,=  t 
3 # -  

As follows from the last two equations in (3.2), the function g2 satisfies the equat ion Lg2 = Lbvb. Thus, 
problem .T" can be  restated.  

P r o b l e m  .T ~. In the domain t > 0, x6R2+, we seek a solution to the system of equat ions 

M~Lva-4- L,,p• - (p2 - P)L2q~. - q 2 L 2 ~  = O, L r  = va, 

which at t > 0, xl  = 0, x2 E R 1 satisfies the  boundary  conditions 

vl + dp:" = NI~2F, r F  = I.tpa-+N2~2F, v2 = Ao~2F"brlp a', q / =  ~T'k+N4~2F, 

and at t = 0 satisfies the initial data. Here 

2(w - rn 2 - 1) 1 
a~ = 512 - ~ + O(q2); N4 = O(q2). 

Lq~ = Lbvb, 
(5.3) 

= - m ( 1  - x )F ,  (5.4) 
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System (5.3) can be rewritten in the symmetric t-hyperbolic (according to Friedrichs) form 

Here V = (pa., vb, v,7, Q, R, q~, r 
the diagonal matrix; 

0 �89 - m  0 0 0 
�89 o o o 0 (1_3 )i 

--rn 0 0 (if2 --/5)I mq 2 0 
B = A + B0, B0 = 0 0 (t52 - /5)I  0 0 0 

0 0 mq 2 0 0 0 

0 ( � 89  1 0 0 0 0 
0 0 0 0 0 0 

AVt + BVzl  + CVx2 + flV = 0. (5.5) 

Q = Lbr R = L~r A = diag (1/2, M12, M 2, 152 - /5 ,  q2,315 - 1/2, 1) is 

0 

0 

0 
0 ; 
0 

0 

0 

0 �89 I 0 0 0 0 
�89 0 0 0 0 (1 - 3p) m 0 

l 0 0 (t52 - ~)rn - l q  2 0 0 
C = 0 0 (P2 - p)m 0 0 0 0 ; 

0 0 - l q  2 0 0 0 0 

o (1_3 )m o o o o o 
0 0 0 0 0 0 0 

a = (~ij) 
as follows from (2.4), 

P 2 - p > 0 ,  3 p - 1 / 2 > 0 ,  

i.e, A > 0. 
Now extend system (5.5) in the following way: 

Ap(Vp)t + Sp(Vp)~, + Cp(Vp)~ 2 + flpVp = O, 

where 

( i , j  = 1---7) is a matrix in which the element w73 = - 1  and the other elements wij = 0. Note that, 

V p  ( V * , T V * ,  e V *  e V *  T2V*,T~IV*,T e V *  e 2 V *  e e V *  e 2 V * ~ *  -~- g l  , q2 , q2 , (21 , ~ lq2  , ~2 ) ; 

Ap = diag (A, A, A, A, A, A, A, A, A, A) 

is a square-diagonal matrix and so on. 

(5.6) 

Writing the energy integral for system (5.6) in the differential form [3] and integrating it over the 
domain R 2, we obtain 

I ff((a,+a;lv,,v,l x=0 ~ J o ( t ) -  f(B,v,,v,)~,=o 
R I R~. 

Here 

Jo(t) = # ( A p V p , V p ) d x ,  (ApVp,Vp) = ( A V , V ) + . . .  + (AVx2,2,V,2x2); 
R~ 

q 2 2 ~ - P H  2 4- r (AV, V ) =  ( p a ' ) 2 + M ~ v ~ + M l V a + ~  r  + 1 
3 p -  

and so on. We assume that  (Vp, Vp) I/2 = Ivp l -4  0 as Xl -* oo or Ix21---* oo. 
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The second and third terms in equality (5.7) are est imated at x~ = 0 in view of (5.3) and (5.1). As a 
result, we write 

R 1 

.I. 2 / 2 • 2 where C1 and C~ > 0 are positive constants, P = (p~)2 + (p~.)~ + (p~)2  + ( p ~ )  + ( p ~ )  + ( p ~ )  ; 
Cq = O(q2); /~ = Fx2~2. Considering again system (5.3) at Xl = 0, after some cumbersome rearrangements, 
with the help of boundary conditions (5.4), we obtain the equality 

= (alp~ + a2p~ + a~p~%)] (~, = O(1), i = 1~--~. 
Zl=0 

Using this equation and invoking the property of the trace of a function from W)2t jR2+) ~ along the line Xl = 0 [21], 
we bring the inequality (5.8) to the following form: 

dzo(~) - C1 f P]x.l=Odx2 < C-2Jo(~) (5.9) 
R1 

(C1, ~ > 0 are constant). 
Now we come to the second stage of constructing the extended system. After simple calculations, we 

find from system (5.3) that  the functions pil, @, and k~ satisfy the following equations: 

MZL2p • - ~12p • - 7~22p • + S = 0; (5.10) 

M2L2 r + 1 {LapJ. _ ( ~  _ ,)L~(~ - q2L2~} = 0. (5.11) 

Here M 2 = M2/k = 1 - gq2 q_ O(q3); ~ __ kpl --=- w -Jr O(q2); pl -- 1 + O(q2); 6 > 0 is an arbitrary constant 
which is determined finally by choosing the parameter k, 

S= ~( (3if--~)L~-{-(k-2+ ~A)~2p'l" 4- 31m~l~2P'l" T 2La((ff2 - ff)L~ + q 2 L 2 r  

1 q- 3/2 1 + 3l 2 

7 = 2k 2w 

We rewrite, following [3, 21] (see also [9]), Eq. (5.10): 

+ O(q2). 

(L~ - L] - / , i )p"  + Z~s = 0. 

Here  L1 = ML1; L1 = 7"; L2 = fl2~1 - M2L1; I,s = flL3; L3 = V/ '~2;  

function p• x) satisfies (5.12), then the vector 

= ,Y2 ,Y3)  W (Y~ * * *  

(5.12) 

= x/r1 - M 2 = V~q + O(q2). If the 

( Y I = L 1 Y ,  Y 2 = L 2 Y ,  Y s = L 3 Y ,  Y = V P ' •  V = ( L 1 , L 2 ,  L3)- *) 

satisfies the following system [3]: 

{~1 - ~L2 - OL3IW + ~ Z: ~ S  = O~ 
3,t 

(5.13) 
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where 

~ =  ~: , h =  ~ , 0 =  -,~ , 
- iAr  - iAr  M - s 

here/C, E, .~4, and Af are arbitrary Hermitian matrices of order three. Returning to the differential operators 
r, ~1, ~2 in (5.13), we obtain the system 

{DT - ~2/~i - f l v f ~ 2  ) w ~  + f12 s VS = 0 
A4 

The following relations [3] are valid: 

(D = M(A 3- M/~)). (5.14) 

Here 

= T;{X2 x Y}To, {(0 _1)) {(_10) } 
/ ~=T~  -1 0 x Y  To, C=T~  0 1 x Y  To. (5.15) 

1 0 _ 1 ) (  ) 
--=i 0 - l  0 x/a; ~ =  ~ - 2 t 4  - E - i A f  

T ~  0 - 1  0 - E + i A f  IC+./t4 
1 0 1 

12 x H is the Kronecker product of the matrices 12 and H and so on; /2  is unit matrix of order 2 and so on. 
By (5.15) 

Let us obtain the boundary conditions for system (5.13). For this purpose, multiply scalarly system 
(5.3) by the vector (M2r,- lr / 'k ,  2mr/k,O,O)*. Considering the obtained expression at Xl = 0 and using 
boundary conditions (5.4), we obtain the relation 

M2(1 + - 3- M2~(vf~2)2 + YsT~2~p • = 0, Xl ---- 0, (5.17) dp2)T 2 ~2p3T~I 

where A = 1A0p 3- O(q2); pi = 1 3- O(q 2) (i = 2,3); N5 = O(q2). Consider also nq. (5.10) at xl = 0. Using 

(5.4), we put it in the following form: 

(pdL~ - psL~ - peL2a)p • + (NeLIL2 + NTLIL3 + NsL2La)p • : O, X,1 ---- O. (5.18) 

Here Pi = 1 3- O(q 2) (i = 4,-----~; Ni = O(q 2) (i = ~-,-,-~). Taking into account (5.17) and (5.18), we take the 
expressions [3, 9] below as the boundary conditions for system (5.13) at Xl = 0 

p j ,  l (Z lp  • - psL2(L2p • ) - p6Z3(Z3p • ) + ~{pTZl(L2p ~ ) - psL2 (Zip• } + NTLI(/,3p • ) + NsL2(Z3p • ) = O, 

Ls(L~p • - L2(Lsp • = 0, 

pgLi(i2p • - ploMdL2(L2p • - ~ mL3 (Lsp • + N9LI(Lap • T NloL2(Lsp z)  -4- Nl11,1 (l-ip • = 0, 

and write them as 

A1Y1 + B1Y2 + C1Ya = 0, (5.19) 
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where ) ) (oo_.6 
p4 apt N7 - ap8  -p5 Ns 0 1 0 

A1 = 0 0 0 , B 1 -- 0 0 - 1  , C1 = M ~  ' 
/11 p9 N9 0 -p loMd /10 0 0 /~ 

here a > 1 is constant, ~ = pll~d + M2A/fl; pi = 1 + O(q 2) (i = ~ ;  Ni = O(q 2) (i = ,~H-). It is easy to 
verify that A <~ 0 (:z < 0, Ao > 0). Choose a value of 6 (i.e., k) such that the coefficient 

( m2 A (2) ) 
m = : 5  1 - - - +  + O ( q  2) 

o. - 7 -  

becomes positive. Here A = A(2)q2 + O(qa); A(2) < 0; 1 - m2/w > O. 
Let 

where 

A = ( A I )  = T ~  

(A1) 
AI = A2 ; 

Ak (k = 1-~) are three-dimensional vectors. Since 

Y~.  A Y I = - - ~ - ( l + A 4 ) ,  

conditions (5.19) can be given as 

A a ) .  
AII = A 4  ' 

Y2 = -vf2A2 = -x/2A3, v~ A1), Y3 = - ' ~ - ( A 4 -  

AI = GAII (5.20) 

( ( - G 2 )  G1 
I a 0 ' ' " 

Let all characteristic numbers of the matrix G lie strictly in the left half-plane, i.e., ReAj(G) < 0, 
j = 1,---,-~. The latter is valid if ~ > 0, )~ < 0 [3]! We set up the Lyapunov equation 

G*H + HG = -Go (5.21) 

to find the matrix H from (5.15). As is known (see, e.g., [22]), nq. (5.21) has the unique solution 

"H= ( H 1 H 2  ) > -- H'"I = H"-~, H3 = -H~ 
Hi H3 

at any real symmetric positive-definite matrix Go. The matrix H is also real and symmetric, and matrices K:, 
L:, 1~4, and Af are found in the following way: 

1 - -  1 - -  H1), / : - I ( H 2 + H ~ ) ,  iN" I(H--~ ~r2). /C = ~(H1 + Ha), .L4 = ~(H3 - = = - 

Since H > 0, we have D > 0 [see (5.16)]. 
Write for system (5.14) the energy integral in the differential form [3] 

(DW,W) , - f l2 (BW,  W)xl- f lv fT(CW, W)x2+fl2{2(YI,]CVS)+2(Y2,LVS)+2(Y3,.A4VS)}= O. (5.22) 

Taking account of system (5.3) and equality (5.12), we can write the term in braces in (5.22) as 

{'" ") = rf l  0 + ~lfll + ~2fl2 �9 (5.23) 

Since the equations for fla (a = i~,~) are cumbersome, they are omitted here. 
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A s s u m i n g  I W l  ~ 0 as z~ ~ o~ or Iz2l ~ ~ and so on, we integrate identity (5.22), taking into 
account (5.3), over the domain R 2 to obtain 

ddt Jl(t)  -~ /~2 /{ (BW,  W )  - ~1} Xl =0 dx2 = 0. (5.24) 
R 1 

Here 

Jl(t)  = f f  { ( DW, W) + fl2g/0} dx. 
R~ 

Note that the quadratic form 

(BW, W) Xl=0 : (GoAII, A-II) Zl=0 

is positive definite, as follows from (5.15) and (5.20). Moreover, since 

then 

 (y2) 
AH = -~- Y1 -Jr Y3 ' 

( J~W,W) zl=o > C3{(L2pI-) 2 -b (LIL2p• 2 q- (L1L3pI) 2 

+ (L22p• + (L2~3PZ)2 + (~2p• zl=0 > CzflSP zl=o, (5.25) 

C3 > 0 are positive constants independent of q and determined finally by the norm of the where U3 and 
matrix Go. Note also that it is possible to obtain the inequality 

-~2al[Xl=0 > N12P[~x=o (N12 = O(q2)) (5.26) 

by using system (5.3) and boundary conditions (5.4) at Xl = 0. 
Because q is infinitesimal, the quadratic form 

(ApVp, Vp) + (OW, W )  + ~2~0 

is positive definite (Ap > 0, D > 0, f12 = O(q2)). Therefore, adding (5.24) and (5.25) and taking into account 
(5.26) and the choice of the matrix Go [see (5.25)], we can obtain the positive-definite form 

-- [ > (~1~ -- C1 -[- NI2)P zl=o > 0. A = {fl2(/3W, W ) -  ~2f~ 1 C,P} Zl-~0 

For example, we can choose Go so that C3 = O(q-11). As a result, the following inequality is obtained: 

d 
- J(t) ~< CsJ(t), t > 0, 
dt 

C5 > 0 is a constant independent of q. From this inequality, the a priori estimate where J ( 0  = J0(t) + Ji(t); 
for problem 9 rl  follows: 

J( t)  < eCstj(0), 

This proves that the mixed problem ~" is well-posed. 
Let initial data (3.4) be such that 

t > o. (5.27) 

Hklt=o = q~k(x),  x �9 R2+, k = 1,2. 
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Then, the function G0(x) (= q~[t=0) is found as a solution to the Dirichlet problem for the Poisson equation 

/ ~ 0  = ~I~O2 --  ~2~01, X E R 2 ,  (I)o Zl=O = - m ( l  - X)Fo(x2), ~2 E R 1. 

Assume also that the functions ~0k(x), k = 1, 2, x E R2+, are finite, with compact carriers lying in the bounded 
domain ~ C R2+ with the smooth boundary 0~. Then we define the function ~0(x) as follows. In the domain 
/~2+\~ G0(x) - - r n ( I  - x)Fo(x2) and in the domain Q, it is found as a solution to the Dirichlet problem 

Ar = ~1qo2 - ~2~ol, x 6 a ,  r = - m ( 1  - x)Fo(x2). 

Then, the following estimate is valid for the function r [23]: 

ll't'ollwffcR~) ~< c6{ ll~olllw~(R~_) + llqo211w~(R~.) + llFollw~fR~)}. 
Here 6'6 > 0 is a positive constant independent of qol,2, F0. From the last inequality by boundary conditions 
(5.4) we derive the estimate 

I]r ~< C6{ ilqolllw~(R~.) + liqo2llW~(R~.)-l-, [Ip~'l~,=ollw~fR~) + llv2,ol~-=ollw~fRx) }, 

where C6 > 0 is a positive constant, p~- = P• v2,0 = v2lt=0. Finally, using the property of the trace of a 
function from W~(R2+) along the line Zl = 0, we obtain as a result 

IIr -< C7{ II~IlIw~(R~)+ 11~2ilw~(R~) + IIP~IIw~(R~+)+IIv2,olIw~(R~+)}, (5.2S) 

where C7 > 0 is a positive constant independent of ~ol,2, p~', v2,0. 
Considering the function r as auxiliary and taking (5.28) into account, we derive from (5.27) the 

desired a priori estimate of the solution of the problem 9v: 

IIU(t)llw~(R~,) ~< IQ, 0 < t ~< T < cr (5.29) 

Here K1 > 0 is a positive constant determined finally by the value T, 

llU(t)ll~(R~)_~ = ff{(u,u) + (U,,U,)+ (U~,,U~,) + (U~=,U~=) 
R~ 

+ (u~:~, u~:~) + (u,:~, u~:~) + (u~,~, u,~)) dx. 

Adding again (5.24) and (5.9), we obtain 

J(t) + / c J(t). (5.30) 
R 1 

Integrating (5.30) over the interval (0, T) and taking into account that J(t) > 0 and .4 > 0, with the help of 
the boundary conditions we find the inequality 

T 
f / { ( F t )  2 +(F,2)  2 +(Fu)  2 +(Ftz2) 2 +. . .  + (F,2z:x2) 2 } dx2 dt <~ C8, (5.31) 

0R1 

where Ca > 0 is a positive constant determined finally by the value T. From the second and third conditions 
(2.3), we obtain the equality 

N2~)p• N2 
F~= P--Y~-0: +70 ~2' ~=0 .  

Multiplying this equality by 2F and integrating it over x26R 1 we obtain, using the HSlder inequality, 

the estimate 

dt 
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where c > 0 is a positive constant, IlF(t)ll 2 = f F2dx2, and so on. Using the property of a function trace on 
R 1 

the line zl = 0, the last inequality can be rewritten as 

d--td IIF(t)IIL2(R,) <~ TcMb {]]p_L(t)IIw~(R2+ ) + ilv2(t)llW~(R2+)}. (5.32) 

In (5.32), Mb > 0 is a positive constant. Further, we find from (5.32) by using the proved estimate (5.29) 

HFHL2((O,T)xR,) <<. C9, (5.33) 

where C9 > 0 is a T-dependent positive constant. Then, combining (5.31) and (5.33), we obtain finally the 
desired a priori estimate for the function F 

IIFIIw~((O,T)• <~ K2. (5.34) 

Here, K2 > 0 is a positive constant determined by T. 
Thus, the obtained a priori estimates (5.29) and (5.34) prove that the problem 9 v is well-posed at q << 1 

and, consequently, the fast shock wave is stable in a collisionless magnetized plasma at high pressure. 
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